

Available online at www.sciencedirect.com

SCIENCE η Direct.

thermochimica acta

Thermochimica Acta 411 (2004) 27–29

www.elsevier.com/locate/tca

New synthetic method and thermochemistry of szaibelyite

Liu Zhihong∗, Hu Mancheng

School of Chemistry and Materials Science, Shaanxi Normal University, Xi'an 710062, PR China

Received 16 December 2002; received in revised form 21 May 2003; accepted 21 July 2003

Abstract

A new synthetic method of szaibelyite (2MgO·B₂O₃·H₂O) has been reported. The enthalpy of solution of 2MgO·B₂O₃·H₂O in 2.9842 mol dm^{-3} HCl (aq) was determined. From a combination of this result with measured enthalpies of solution of H₃BO₃ in 2.9842 mol dm⁻³ HCl (aq) and of MgO in $(HCl + H_3BO_3)$ solution, together with the standard molar enthalpies of formation of MgO (s), H_3BO_3 (s), and H_2O (l), the standard molar enthalpy of formation of $-(2884.36 \pm 1.82)$ kJ mol⁻¹ of 2MgO·B₂O₃·H₂O was obtained. © 2003 Elsevier B.V. All rights reserved.

Keywords: Szaibelyite; Synthesis; Standard molar enthalpy of formation; Solution calorimetry

1. Introduction

There are many kinds of magnesium borates, both natural and synthetic. Some of them have useful properties, such as $2MgO·B_2O_3$ ($Mg_2B_2O_5$) and $2MgO·B_2O_3·H_2O$ might be prepared as whisker materials [1]. $2MgO·B₂O₃·H₂O$ named szaibelyite (ascharite) is a magnesium borate mineral with a structure formula of $Mg_2[OH][B_2O_4(OH)]$ [2]. Recently, we also found a new synthetic method for it when we investigated the phase t[ransf](#page-2-0)ormation of $2MgO·2B₂O₃·MgCl₂·$ 14H2O in boric acid solution. The advantages of this method consist in the natural material of $2MgO·2B₂O₃·MgCl₂·$ 14H2O which was obtained from the natural concentrated salt lake brine [3], relatively lower hydrothermal reaction temperature.

Thermodynamic properties play very important roles in scientific research and industrial applications. Li et al. [4] repo[rted t](#page-2-0)he standard molar enthalpy of formation of eight hydrated magnesium borates. This paper reports this new synthesis method and the standard molar enthalpy of formation of $2MgO·B₂O₃·H₂O$.

2. Experimental

 $2MgO·B₂O₃·H₂O$ could be synthesized by the dissolution and phase transformation of double salt $2MgO·2B₂O₃$. $MgCl₂·14H₂O$ in boric acid solution at hydrothermal condition as follows: 1.86 g (3.28 × 10⁻³ mol) 2MgO·2B₂O₃· MgCl2·14H2O (synthesized by modification of the literature method [5]), 1.85 g (2.99 × 10⁻² mol) H₃BO₃, and 20 ml H2O were put in the lining of small autoclave (40 ml). The mixture was stirred for 0.5 h, and placed in an oven at 180° C. The autoclave was cooled naturally and opened after reac[tio](#page-2-0)n 3 days. The solid phase was separated, washed thoroughly with hot distilled water, and then with alcohol and ether. Finally, the solid phase was dried at 80° C to constant mass. The synthetic sample was characterized by X-ray powder diffraction (Rigaku D/MAX-IIIC), FT-IR spectroscopy (Bruker Equinox 55 spectrometer with KBr pellets at room temperature), TG (Perkin-Elmer TGA7, at a heating rate of 10 K min^{-1} in flowing N₂). The chemical compositions of the sample were determined by EDTA titration for Mg^{2+} , by NaOH standard solution in the presence of mannitol for B_2O_3 , and by difference for H_2O .

 $2MgO·B₂O₃·H₂O$ can be regarded as the product of the following reaction:

$$
2MgO(s) + 2H_3BO_3(s) = Mg_2B_2O_5 \cdot H_2O(s) + 2H_2O
$$
\n(1)

 $2MgO·B₂O₃·H₂O$ is one of the most difficult to dissolve of the magnesium borates, so the enthalpies of solution of $2MgO·B_2O_3·H_2O$, of H_3BO_3 in approximately 3 mol dm⁻³ HCl (aq), and of the calculated amount of MgO in aqueous (hydrochloric acid + boric acid) which consisted of approximately 3 mol dm⁻³ HCl (aq) and the calculated amount of H_3BO_3 were determined. The standard molar enthalpy of formation of $2MgO·B₂O₃·H₂O$ could be obtained by

[∗] Corresponding author. Tel.: +86-29-5307765; fax: +86-29-5307774. *E-mail address:* liuzh@snnu.edu.cn (L. Zhihong).

^{0040-6031/\$ –} see front matter © 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.tca.2003.07.009

solution calorimetry as above in combination with the standard molar enthalpies of formation of MgO (s), H_3BO_3 (s), and $H₂O$ (1). The HCl solvent was prepared from analytical grade hydrochloric acid and deionized water, and its concentration, 2.9842 mol l−1, was determined by titration with standard sodium carbonate, and its density, 1.053 g cm⁻³, was taken from Soviet Chemical Handbook [6].

A RD496-III heat conduction microcalorimeter (Southwest Institute of Electron Engineering, China) was used and has been described in detail previously [7]. The temperature of the calorimetric experiment [was](#page-2-0) 298.15 K. Additional double-layer glass tubes were put in the 15 ml stainless steel sample cell and reference cell of the calorimeter. This was done to prevent corrosion of t[he st](#page-2-0)ainless steel sample and reference cell by HCl (aq). The lining in the double-layer glass tube containing HCl (aq) was broken by a rod after thermal equilibration for at least 2 h, and the HCl (aq) was mixed with solid sample in the outer glass tube, then the thermal effect was recorded automatically on a computer. Total time required for the complete reaction was about 0.5 h for H_3BO_3 (s) and MgO (s), 1 h for $2MgO·B_2O_3·H_2O$. There were no solid residues observed after the reactions in each calorimetric experiment.

3. Results and discussion

Chemical analysis results of synthetic sample: MgO, 47.21%; B_2O_3 , 41.43%; H_2O , 11.36%; mole ratio of MgO: $B_2O_3:H_2O = 1.97:1.00:1.06$. TG curve indicates that the total loss is 10.78% in the range of 691 \sim 933 \sim 1043 K, which corresponds to the loss of one water molecule and can be compared with calculated value of 10.70%. The *d* (nm) values of XRD spectrum are 0.6232, 0.5181, 0.3020, 0.2980, 0.2659, 0.2599, 0.2569, 0.2536, 0.2429, 0.2318, 0.2304, 0.2202, 0.2079, 0.1554, 0.1548. FT-IR spectrum of synthetic sample exhibited the following absorptions and they were assigned referring to literature [8]. The band at 3561 and 3427 cm⁻¹ is the stretching of O–H. The bands at 1461, 1400 and 1015, 981, 926 cm−¹ might be the asymmetric and symmetric stretching of B(3)–O, respective[ly.](#page-2-0) The band at 1227 cm^{-1} is the i[n-pla](#page-2-0)ne bending of B–O–H. The strong band at 709, 627 cm^{-1} is the out-of-plane bending of B(3)–O. The weak band at 560 cm^{-1} is the in-plane bending of B(3)–O. No impurity lines were observed. The synthetic sample is suitable for the following calorimetric experiments.

To check the performance of RD496-III heat conduction microcalorimeter, calorimetric measurements on the enthalpies of solution of KCl (spectral purity) in deionized water and of THAM (trishydroxymethylaminomethane) in 0.1 mol dm^{-3} HCl (aq) were made, respectively. The average experimental values $17.23 \pm 0.04 \,\mathrm{kJ\,mol^{-1}}$ of $\Delta_{sol}H_m^{\alpha}$ of KCl (s) and $-(29.75 \pm 0.04)$ kJ mol⁻¹ of THAM are in excellent agreement with those of 17.234 kJ mol−¹ reported in the literature [9] and $-(29.73 \pm 0.04)$ kJ mol⁻¹ reported

Table 1

Table 2

The molar enthalpies of solution of H₃BO₃ (s) in 2.9842 mol dm⁻³ HCl at 298.15 Ka

No.	Mass/mg	$\Delta_{sol}H_m$ (kJ mol ⁻¹)
	5.94	22.60
2	6.26	22.81
3	6.14	22.73
$\overline{4}$	6.15	22.32
5	6.17	22.53
Mean		$22.60 \pm 0.17^{\rm b}$

^a In each experiment, 2.00 cm^3 of HCl (aq) was used.

^b Uncertainty is estimated as twice the standard deviation of the mean.

The molar enthalpies of solution of MgO (s) in $(HCl + H_3BO_3)$ solution at 298.15 Ka

No.	Mass/mg	$\Delta_{\rm sol}H_{\rm m}$ (kJ mol ⁻¹)
	1.40	-148.19
\overline{c}	1.49	-148.44
3	1.47	-148.71
$\overline{4}$	1.46	-148.52
$\overline{}$	1.44	-148.64
Mean		$-148.50 \pm 0.18^{\rm b}$

^a In each experiment, 2.00 cm^3 of HCl (aq) was used.

^b Uncertainty is estimated as twice the standard deviation of the mean.

in the literature [4], respectively. This shows that the device for measuring the enthalpy of solution used in this work is reliable.

The results of the calorimetric measurements are given in T[ables](#page-2-0) 1–3, in which $\Delta_{sol}H_m$ is the molar enthalpy of solution of solute, and the uncertainty is estimated as twice the standard deviation of the mean, namely, δ = $2\sqrt{\sum (x_i - \bar{x})^2/n(n-1)}$, in which *n* is the experimental number $(n = 5)$, x_i the experimental value of each series of repeated measurement and \bar{x} the mean value.

Table 4 gives the thermochemical cycle for the derivation of the standard molar enthalpy of formation of $2MgO·B₂O₃·H₂O$. The two solutions after reactions (2) and (3) had the same value of refraction index n^{25} of 1.3558 (A 2WA-J type of Abbe refractometer, Shanghai, China), indicating that their thermodynamic states were the same and the thermochemical cycle designed in Table 4

 a In each experiment, 2.00 ml of HCl (aq) was used.

^b Uncertainty is estimated as twice the standard deviation of the mean.

Table 4 Thermochemical cycle and results for the derivation of $\Delta_f H_{\text{m}}^{\circ}$ (2MgO·B₂O₃·H₂O, 298.15K)

was correct. The standard molar enthalpies of formation of H_2O (1), MgO (s), and H_3BO_3 (s) were taken from the CODATA Key Values [10], namely $-(285.830 \pm 0.040)$, $-(601.60 \pm 0.30)$, and $-(1094.8 \pm 0.8)$ kJ mol⁻¹, respectively. The enthalpy of dilution HCl (aq) was calculated from the NBS tables [11]. From these data, the standard molar enthalpy of formation of $2MgO·B₂O₃·H₂O$ was calculated to be $-(2884.36 \pm 1.82)$ kJ mol⁻¹.

A similar compound $2MgO·B₂O₃·2H₂O$ was obtained by the phase transformation of $2MgO·2B₂O₃·MgCl₂·14H₂O$ in water at 120° C. It is easy to dissolve in 1 mol dm⁻³ HCl (aq). So the standard molar enthalpy of formation of $-(3185.78 \pm 1.91)$ kJ mol⁻¹ of 2MgO·B₂O₃·2H₂O was obtained by solution calorimetry of it in 1 mol dm⁻³ HCl (aq) [12]. The difference between the two values is −301.42, which near the $-290.42 \text{ kJ} \text{ mol}^{-1}$ of $\Delta_f H_{\text{m}}^{\circ}$ of structural water and might result from the difference of one structural water between these two molecules.

Acknowledgements

This subject was supported by the Nature Science Foundation of Shaanxi Province of China (grants 2002B13).

References

- [1] K. Sakane, H. Wada, T. Kitamura, Gypsum Lime 235 (1991).
- [2] F.C. Hawthorne, Can. Mineral. 24 (1986) 625.
- [3] S.Y. Gao, Z.G. Chen, J.N. Feng, Chin. J. Inorg. Chem. 1 (1986) 40.
- [4] J. Li, S.Y. Gao, Sh.P. Xia, B. Li, R.Z. Hu, J. Chem. Thermodyn. 29 (1997) 491.
- [5] S.Y. Gao, X.A. Chen, S.P. Xia, Acta Chim. Sin. 48 (1990) 1049.
- [6] K. Tao, Soviet Chemical Handbook (III), Science Press, Beijing, 1963.
- [7] M. Ji, M.Y. Liu, Sh.L. Gao, Q.Zh. Shi, Instrum. Sci. Technol. 29 (1) (2001) 53.
- [8] J. Li, S.P. Xia, S.Y. Gao, Spectrochim. Acta A 51 (1995) 519.
- [9] R.C. Weast, CRC Handbook of Chemistry and Physics, 70th ed., CRC Press, Boca Raton, FL, 1989.
- [10] J.D. Cox, D.D. Wagman, V.A. Medvedev, CODATA Key Values for Thermodynamics, Hemisphere, New York, 1989.
- [11] D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Chumey, R.L. Nuttall, The NBS tables of chemical thermodynamic properties, J. Phys. Chem. Data 11 (Suppl. 2) (1982).
- [12] Z.H. Liu, Ph.D. Dissertation, Lanzhou University, China, 2003.